Optimizing Text Encoding Model to Improve
Matching Between Resumes and Job Postings

Andre Lustosa Motta
North Carolina State University
alustos@ncsu.edu

Abstract—Resume Job Matching is a classification task de-
signed to be used by Application Tracking Systems. This task
is supposed to prune the high number of resumes a job posting
usually receives to ease the load on humans that have to go
through those resumes. Most of those softwares only look to
find specific keywords. And the problem of using text mining
to rank resumes is considered a hard problem. One of the
first steps of text mining is the encoding of the information.
Or how we are going to represent the data. The vector based
model of representation is widely used, but even though it has
hyperparameters, those are rarely optimized to achieve a good
representation to a specific domain. In this paper we propose the
optimization of vector based encoding and demonstrate how by
doing this we can improve classification.

Index Terms—Resume/Job Matching, Application Tracking
System, LDA, TF-IDF, classification techniques, experimental
design, parameter optimization

I. INTRODUCTION

The rise on the number of people graduating in Computer
Science in the recent years and the fact that industry is more
accepting of hiring people without college degrees has been
causing a surplus on the market of Software Engineers. This
surplus of available resumes has been met with the rise of
Application Tracking Systems, which are automated systems
that will analyze resumes before any human. These systems
usually analyse the resume for keywords related to the job
position and prune the number of resumes the HR department
will have to read through to select the candidate.

However the literature on the problem shows that making
predictions based on the extraction of information on resumes
is a hard problem that usually leads to low accuracy results.
And during the literature review on the problem we found no
attempts at optimizing the encoding of the documents before
passing it on to a classifier.

Given this we propose a tuned encoding model to generate
better encodings relevant to the domain of the documents in
order to generate better results. The proposed encoding model
is the combination of TF-IDF [1] and an Latent Dirichlet
Allocation(LDA) [2] implementation. The vectors generated
from TF-IDF are fed into LDA and in order to rank the
resumes to a certain job posting we would calculate the
Cosine Distance between the target job and the resumes and
rank the resumes according to that distance.

We used a database of 400 jobs and 400 resumes for Software
Engineering positions. With those we were able to gather 388
matches of different combinations of jobs and resumes. These

388 matches were then used to test and evaluate the model.

II. RESEARCH QUESTIONS

Even though prior work suggests that resume classification
is a hard test we have rarely seen attempts at optimizing
the classifiers and no attempts at optimizing the
encoding of the documents for their specific domain.

RQ1 How much does the performance of resume classifica-
tion improve when automated parameter optimization of the
encoding is applied?

When encoding a document, we are translating text to another
dimensional representation. Our hope by using these encoding
methods is that we keep as much semantic and important
information on the new representation. However most of the
encoding done will use default parameters of the chosen
technique.

The question we are proposing then is whether using different
hyperparameters can affect the encoding and whether we
can optimize those to generate better representations for the
domain of Resumes and Job Postings.

III. CASE STUDY APPROACH
A. Data Collection

The challenge of data collection is to collect large scale
unlabeled data of job posts and resumes.

1) What has been done: After carefully examined four
online data sources (LinkedIn, LiveCareer, PostJobFree, and
Jobvertise), we concluded that there is no free online data
source that could provide large scale data for our project. The
pattern we observed was that, usually those websites claimed
a large number (millions) of resumes/job posts available, but
in fact, only a few hundreds could be accessed by the users.
Figure [I] shows the number of job posts/resumes can be
collected from each data source. During Phase 1, we have
collected 500 resumes and 500 job posts for the job title of
software engineer.

B. Data Cleaning

The most important step in data cleaning is to remove the
personally identifiable information (PII) in collected resumes.
PII such as name and contact information should not be used
or even accessible by the model for the subsequent training
and analysis. Based on our analysis, the collected resumes
from most data sources are not structured. Therefore it remains

Linkedin Software Engineer Query

Boasted Jobs

Collectable Jobs With Money
Collectable Jobs Without Mone!
Boasted Resumes

Number of Results

100 1000 10000 100000

(a) LinkedIn

PostJobFree Software Engineer Query

Boasted Jobs
[efe]2aeElols Jioies Wit MienE)

Collectable Jobs Without Mone:
Boasted Resumes

Number of Results

0 2500 5000 7500 10000 12500

(c) PostJobFree

LiveCareer Software Engineer Query

Beesied

Celleetable Witk
Collectable Jobs Without Mone!
Boasted Resumes

Number of Results

0 50 100 150 200 250

(b) LiveCareer

Jobvertise Software Engineer Query

Boasted Jobs

Collectable Jobs With Money
Collectable Jobs Without Mone:
Boasted Resumes

Number of Results

5 10 50 100 500 1000

(d) Jobvertise

Fig. 1: How much data can be collected.

a research challenge to remove PII from such unstructured
resumes.

C. Data Labeling

Not only do we need large scale unlabeled data, but we

also need ground truth labels for the required tasks. Without
such ground truth labels, it is impossible to train the model as
well as evaluating the performance of the model. Therefore
the ground truth labels have to be collected for Job-resume
matching: the ground truth of which resumes are qualified
for which job posts.
To do so we generated 22500 triplets of possible matchings
between resumes and a job post. A secondary resume was
randomly selected to accompain the first one. This data was
then passed to humans to classify which of the two resumes
would be better for that job posting. This was achieved with
the development of a cloud based server in .NET Framework
and a React.js website which would allow for a scalable
collection of the data.

1) The Triplet Test Rig: The server was developed in order
to be reused. It supports any kind of triplet matching with
textual data and can be scaled to any number of participants.
The website is a simple webpage that shows the triplet. It can
also be used to validate machine generated matches. Since it
randomizes the order in which the options to be selected will
appear. Giving no way to bias to be passed to the participant.

Unfortunately running such experiments proven to be hard
and much of the collected data had to be cleaned. At the end
we were able to collect 388 human made matches.

At the end our dataset for evaluation consisted of 388 pairing
of resumes and job postings. These had a rate of agreement of
over 90% and at least two human votes for the specific triplet
selection.

D. Feature Engineering

This step focuses on finding the best representation of
resumes and job posts to better serve the classification. In
order to do this an extensive Literature Review on the topic
of text encoding has been done.

After an extensive literature review on the topic of document
encoding, we were able to assimilate four basic techniques to
encode a document.

« Vector Based Encoding: Which are variations of techniques
on frequency based generation of vectors that encode words,
sentences, or entire documents. Some well known tech-
niques that use Vector Based Encoding are the previously
cited Term Frequency[1]], LDA[2] and doc2vec[3]. Another
technique for generating deeper vectors is the word vectors
algorithm([4]] (or word2vec), that similarly to doc2vec learns
vector representations to a document at the level of each
word. Which means each word will have its own vector at
the end. One last interesting technique that we found inter-
esting are the application of different deep neural networks
to generate the document or word vectors[3]]. By applying
deep neural networks the intuition is to achieve better results
in features on the vector space to better determine values of
those features.

« Table Based Encoding: Which are another way of us-
ing frequency based techniques to encode documents into

tables[6]] that can be compared to search for similarities and

classification. These tables contain the frequency of each

term in the document. And similarities may be computed
by comparing the frequencies of the intersection set.

« Graph Based Encoding: Using a mixture of frequency
based techniques and approaches of maximum contextual
distance, encodes documents into a graph of relationships
between words|[7] [8]. The graphs can then be compared by
how important words are in each of them (The degree of
the vector multiplied by its weights being the importance
factor).

« Encoding by Self Organizing Maps (SOM): after trans-
forming each word into a one-hot representation this ap-
proach generates an artificial neural network that represents
the hierarchy of words in the document [9]. These hierar-
chies can then be used as an input to another classification
tool to differentiate structures.

Usually those techniques are used together or combined
with extra algorithms in order to perform different tasks, such
as, Document Classification, Document Clustering, Document
Summarizing, Document Similarity and Feature Extraction, to
different degrees of success.

Out of all the papers reviewed on the topic of document
encoding for different tasks, about 80% of them use Vector
Based Encoding. The reason for that is that, out of the 4
techniques, Vector Based Encoding has the best trade off
between complexity and performance. Graph Based Encoding
and Self Organizing Maps, have a much higher computational
overhead and while they may display better performance that
might not be enough to make it worth the extra computational
overhead. Only 2 papers out of the almost 100 studied used
Table Based Encoding, therefore we don’t have many results
to compare the performance and complexity trade off between
them.

With the review we were able to find some very interesting
combinations using the following techniques:

o KNN (K-Nearest Neighbours)[10]]

Simple non-parametric classifier that uses the concept
of distance to classify new data.

e SVM (Support Vector Machine)[11]

Simple parametric linear classifier.

o NN (Multi Layered Perceptrons)[12]

Combination of perceptrons into a parametric classifier.

« NB (Naive Bayes)

Simple statistical analysis of the likelihood of the class
given the evidence.

e CNN (Convolutional Neural Network)[13]]

Combinations of perceptrons that apply filtering con-
volutions into a deep neural network model for a parametric
classifier

o GA (Genetic Algorithms)[14]

Similar to optimization techniques approximates a de-
sired function by mimicking natural evolutionary processes

e RNN (Recurrent Neural Network)[[15]]

Combination of perceptrons into a parametric classifier
with a complex architecture capable of retaining memory for

deep neural processes.
¢ CL (Clustering Algorithms)
Unsupervised algorithms for clustering together similar
points in the database
e SK (Semantic Kernels)[16]]
Technique to identify the defining key words in a
document

E. Model Definition

After this extensive literature review, and with our idea of
testing solely the optimization of encoding techniques, we
decided on the following model:

1) Encoding: Two different techniques have been combined
to encode resumes and job posts. They are:

o Term Frequency (TF-IDF): each document is encoded as a
fixed length vector representing the frequency of each term
appears. We kept 4,000 terms with highest tf-idf metric [1].
This has been the most commonly used and basic text
embedding technique for tasks like text classification [1].

o Latent Dirichlet Allocation (LDA): LDA is a three-level
hierarchical Bayesian model, in which each item of a
collection is modeled as a finite mixture over an underlying
set of topics. Each topic is, in turn, modeled as an infinite
mixture over an underlying set of topic probabilities [2].
LDA is widely used for topic modeling of text data and can
be used as an representation of text.

2) Classification: To classify the resumes accordingly to a
job posting we used a distance based technique. The Cosine
Distance, which is defined as:

Job - Resume

1
|| Jobl|| - || Resumel M

cos(Job, Resume) =

We are then simply calculating the distance between the final
encodings of the data. Without any further learning task in
order to separate any improvement effect that a learner can
cause on the comparison of optimized models.

3) Architecture: The architecture of the model as be seen
in Figure [2] consists of three separate databases. The database
containing the Resumes, the database containing the Job Post-
ings and the database containing the Human-Made Triplets.
The first two databases are piped through the Term Frequency
encoder which generates a sparse matrix, and this sparse
matrix is passed to the LDA model which returns the encoded
texts. From there on we pass to the evaluation step. Where
the model will receive a human made Triplet and compare the
distance between resumes and jobs. The results are recorded
on a file.

In this a job post and a resume match better if the distance
between their representations is shorter. This is an unsuper-
vised learning model which does not need ground truth labels
to train, but only relies on the text representation technique. It
can be used as a baseline model and can be used to evaluate
the performance of different text representation techniques in
the future.

TABLE I: Explored Combinations in Literature

Encoding Techniques Learners Used

KNN SVM NN NB SVD CNN GA RNN CL SK
Vector Based [L7] 18] [19] [20] [21] [22] [21] [23] [L7] [22] [24] [16]
Table Based L6l el [6]
Graph Based 171 181
Self Organizing Maps [25] [26] [25]

Model Architecture
-

S——
Resumes
Database

=
Encoded
Texts

==
Jobs
Database

Distance
Based
Classifier

Human
Made
Matches

Results

Fig. 2: Model Architecture

F. Optimizing the Model Parameters

The two steps of encoding into the model both have
parameters which might be optimized for a better generation
of a representation for each document.

TF-IDF Parameters:

o Norm: Normalization strategy for vectors

« Useidf: Whether to consider the inverse document frequency
or not

o Max_features : Maximum number of features in vocabulary

o Sublinear_tf: replace tf with 1+log(tf)

¢ Decode_error (What to do on errors in decoding bytes from
text)

LDA Parameters:

o N_topics: The number of topics to find

« N_iter: How many iterations of the algorithm to run

o Alpha: related to how many dominant topics a document
has

« Beta: related to how many dominant words a topic has

For this work in progress paper 51 models were generated
by generating one million random combinations of the 9
parameters above mentioned. After that we ran K-means
with K = 50 on random weights assigned to each of the one
million combinations. Through the centroids we determined
the parameters for each of the models by selecting them on
a distribution of the options on the random weights of the
centroids. The 51st model was the selected baseline with the
default parameters found in the python packages

IV. TESTING THE MODELS

The models were trained on all the job postings and
resumes. Trained to be able to encode all 1000 documents.
This was done by passing the documents to TF-IDF and then
into LDA.

In order to evaluate the models we made the models rank
the two resumes in the human made match against the job
posting by using the cosine distance between the encodings.
If the models were able to classify the human decided resume
as best we counted as a successfull prediction.

The evaluation function was then just a measure of accuracy

Accuracy = TruePositives/Total

2

Initially we were able to see that some optimized models did
outperform the baseline. However in order to trully understand
wether that was a real difference in performance we ran each
of the 51 models 20 times with the same dataset, from there
we used the recorded accuracy for each run executed a Scott
Knott’s test.

With the Scott Knott test done we were able to confirm
that some optimized models outperformed the baseline by
about 10% in accuracy. Not only that but the baseline model
was on the lower end of Scott Knott suggesting that the base
parameters suggested by the package were not good enough
for the task. The base parameters had an accuracy very close
to a coin flip, suggesting that it did not learn much and was
predicting randomly

V. CASE STUDY RESULTS

After the aforementioned analysis it was possible
to get the following answer to the research question:

RQ1 As seen in Figure [3|we can safely assume that optimizing
the encoding for the specific domain of Resumes/Job Postings
leads to a positive impact in the accuracy of classification tasks
even when coupled with a simple distance based classifier.

VI. THREATS TO VALIDITY

o Construct Validity: The results from RQ1 show that opti-
mizing the encoding improves the performance of matching
resumes to job postings. However, the performance im-
provement may increase the complexity of the models, the
increase on certain parameters both in TF-IDF and LDA can
substantially increase the training time.

o Internal Validity: The performance of the classifiers was
measured using accuracy. Other evaluation frameworks
based on different approaches may have different results.

Model (b0 = Baseline)

PP IR I S 2PN 00 0000 0P TPP 2 PRSP PP TP LI POD P IIP o0
0.62
0.60
0.58
0.56
0.54
0.52
0.50
0.48

1 1 1 22 2233444456666 7 7 77 8888 888 88 8 8899 9101010101111 111212131313 13 14

Scott Knott Group

Fig. 3: Scott Knott Test on the Models Performance

« External Validity: The size of the dataset studied in this
paper was limited. Therefore the results may not generalize
to every job category. However the point of this paper is not
to generalize but to show that optimization can be a good
tool to improve the accuracy of the matchings.

VII. FUTURE WORK

Throughout the paper we only used a limited number of
tools because of the labeling problem. We hope to, in the
future, collect more human data and try to tackle the problem
using different classifiers and other supervised techniques.
With this we hope to understand wether the impact caused
by optimizing the encoding will reflect on learners coupled
with the suggested model.

[11

[2]

[3]
[4]

[5]

[7]

[8]

REFERENCES

G. Salton and C. Buckley, “Term-weighting approaches in automatic
text retrieval,” Information processing & management, vol. 24, no. 5,
pp. 513-523, 1988.

D. M. Blei, A. Y. Ng, and M. 1. Jordan, “Latent dirichlet allocation,”
Journal of machine Learning research, vol. 3, no. Jan, pp. 993-1022,
2003.

A. M. Dai, C. Olah, and Q. V. Le, “Document embedding with paragraph
vectors,” arXiv preprint arXiv:1507.07998, 2015.

T. Mikolov, K. Chen, G. S. Corrado, and J. Dean, “Efficient estimation
of word representations in vector space,” 2013. [Online]. Available:
http://arxiv.org/abs/1301.3781

V. Christlein and A. Maier, “Encoding cnn activations for writer recogni-
tion,” in 2018 13th IAPR International Workshop on Document Analysis
Systems (DAS), April 2018, pp. 169-174.

T. Jo and G. Jo, “Table based single pass algorithm for clustering
electronic documents in 20newsgroups,” in 2008 IEEE International
Workshop on Semantic Computing and Applications, July 2008, pp. 66—
71.

F. D. Malliaros and K. Skianis, “Graph-based term weighting for
text categorization,” in 2015 IEEE/ACM International Conference on
Advances in Social Networks Analysis and Mining (ASONAM), Aug
2015, pp. 1473-1479.

B. F. Momin, P. J. Kulkarni, and A. Chaudhari, “Web document
clustering using document index graph,” pp. 32-37, Dec 2006.

[9]

[10]

[11]
[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

(21]

[22]

(23]

T. Kohonen, “Self-organized formation of topologically correct feature
maps,” Biological Cybernetics, vol. 43, no. 1, pp. 59-69, Jan 1982.
[Online]. Available: https://doi.org/10.1007/BF00337288

E. Fix and J. Hodges, “Discriminatory analysis, nonparametric discrim-
ination: Consistency properties,” Technical Report 4, USAF School of
Aviation Medicine, Randolph Field., 1951.

L. A. Vapnik V, “Pattern recognition using generalized portrait method.
automation and remote control,” vol. 24, pp. 774-780, 1963.

S. Kleene, “Representation of events in nerve nets and finite automata.
automata studies.” vol. 34, pp. 3—42, 1956.

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278-2324, Nov 1998.

A. J. O. L. J. Fogel and M. J. Walsh, “Artificial intelligence through
simulated evolution,” 1966.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning
Representations by Back-propagating Errors,” Nature, vol. 323, no.
6088, pp. 533-536, 1986. [Online]. Available: http://www.nature.com/
articles/323533a0

S. Bloehdorn, R. Basili, M. Cammisa, and A. Moschitti, “Semantic
kernels for text classification based on topological measures of fea-
ture similarity,” in Sixth International Conference on Data Mining
(ICDM’06), Dec 2006, pp. 808-812.

W. Song and S. C. Park, “A novel document clustering model based
on latent semantic analysis,” in Third International Conference on
Semantics, Knowledge and Grid (SKG 2007), Oct 2007, pp. 539-542.
R. R. K. Menon and N. Aswathy, “Document summarization using
dictionary learning,” in 2017 International Conference on Advances in
Computing, Communications and Informatics (ICACCI), Sep. 2017, pp.
645-650.

J. D. Prusa and T. Khoshgoftaar, “Training convolutional networks on
truncated text,” in 2017 IEEE 29th International Conference on Tools
with Artificial Intelligence (ICTAI), Nov 2017, pp. 330-335.

I. Gallo, S. Nawaz, and A. Calefati, “Semantic text encoding for
text classification using convolutional neural networks,” in 2017 [14th
IAPR International Conference on Document Analysis and Recognition
(ICDAR), vol. 05, Nov 2017, pp. 16-21.

P. Chen, W. Guo, L. Dai, and Z. Ling, “Pseudo-supervised approach for
text clustering based on consensus analysis,” in 2018 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), April
2018, pp. 6184-6188.

E. Len, J. Gmez, and O. Nasraoui, “A genetic niching algorithm with
self-adaptating operator rates for document clustering,” in 2012 Eighth
Latin American Web Congress, Oct 2012, pp. 79-86.

P. Yan, L. Li, and D. Zeng, “A shortcut-stacked document encoder for

http://arxiv.org/abs/1301.3781
https://doi.org/10.1007/BF00337288
http://www.nature.com/articles/323533a0
http://www.nature.com/articles/323533a0

[24]

[25]

[26]

extractive text summarization,” in 2019 International Joint Conference
on Neural Networks (IJCNN), July 2019, pp. 1-8.

B. Saha, D. Phung, D. S. Pham, and S. Venkatesh, “Sparse subspace
representation for spectral document clustering,” in 2012 IEEE 12th
International Conference on Data Mining, Dec 2012, pp. 1092-1097.
D. Zufferey, S. Bromuri, and M. Schumacher, “Case-based retrieval
of similar diabetic patients,” in 2015 9th International Conference on
Pervasive Computing Technologies for Healthcare (PervasiveHealth),
May 2015, pp. 312-316.

X. Luo and N. Zincir-Heywood, “Incorporating temporal information for
document classification,” in 2007 IEEE 23rd International Conference
on Data Engineering Workshop, April 2007, pp. 780-789.

	Introduction
	Research Questions
	Case Study Approach
	Data Collection
	What has been done

	Data Cleaning
	Data Labeling
	The Triplet Test Rig

	Feature Engineering
	Model Definition
	Encoding
	Classification
	Architecture

	Optimizing the Model Parameters

	Testing the Models
	Case Study Results
	Threats to Validity
	Future Work
	References

